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This paper studies one application of mutual information to symbolic sequen- 
ces: the mutual information function M(d). This function is compared with the 
more frequently used correlation function F(d). An exact relation between M(d) 
and F(d) is derived for binary sequences. For sequences with more than two 
symbols, no such general relation exists; in particular, F(d) = 0 may or may not 
lead to M(d)= 0. This linear, but not general, independence between symbols 
separated by a distance is studied for ternary sequences. Also included is the 
estimation of the finite-size effect on calculating mutual information. Finally, the 
concept of "symbolic noise" is discussed. 

KEY WORDS:  Mutual information function; correlation functions; linear 
and general dependence; symbolic noise. 

1. I N T R O D U C T I O N  

Mutual information is a measure of the dependence between two 
variablesJ 1) If the two variables are independent, the mutual information 
between them is zero. If the two are strongly dependent, e.g., one is a func- 
tion of another, the mutual information between them is large. There are 
other interpretations of the mutual information; for example, the stored 
information in one variable about another variable, and the degree of 
the predictability of the second variable by knowing the first. Clearly, all 
these interpretations are related to the same notion of dependence and 
correlation, 

The correlation function is another frequently used quantity to 
measure dependence. (The "function" in the name "correlation function" is 
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used because correlation is usually measured as a function of distance or 
time delay between two quantities.) It is now well understood that mutual 
information measures the general dependence, while the correlation func- 
tion measures the linear dependence, and mutual information is a better 
quantity than the correlation function to measure the dependence. This 
difference leads to different methods in choosing the independent variables 
for constructing the phase trajectory in the study of chaotic dynamics. (2'3) 

Another major difference between mutual information and correlation 
function is that the former can be applied to symbolic sequences as well as 
numerical sequences, but the latter can only be used on numerical sequen- 
ces. This makes mutual information a natural alternative to the correlation 
function for symbolic sequences. In this context, I will use the name 
"mutual information function" to refer to the fact that it is the functional 
form--of the mutual information versus the distance between the two 
variables--that is emphasized. 

Random signals, usually called "noise," are classified by their power 
spectra, and equivalently, correlation functions. Since a correlation func- 
tion cannot be applied directly to symbolic sequences, the classification of 
the random symbolic sequences is rarely discussed. Most of the previous 
studies of letter sequences in natural languages or nueleotide sequences in 
DNA polymers are focused on entropy (starting from Shannon(4)). Some- 
times, the nearest-neighbor correlations using conditional probabilities are 
also studied. (5'6) With the mutual information function, it is conceivable 
that a more complete characterization of the symbolic sequences can be 
accomplished. 

Let me reintroduce the definition of the mutual information function 
and the correlation function for a finite sequence {xi} (i = 1, 2,..., N), where 
xi~ {a~} ( e =  1, 2,..., K), the variable set. The correlation function is 

F ( d ) = Z ~  a~a~P~r ) - a~P, (1.1) 

Both the single-site probabilities {P~} and the joint probabilities for two 
sites {P~(d)} are accumulated from the single sequence to be analyzed. 
The (site-to-site) mutual information function is defined as 

K K 

1 P~(d) (1.2) 

The block-to-block mutual information is defined as the mutual informa- 
tion between two L-blocks, i.e., blocks with L sites, separated by a distance 
of d sites. It is similar to the site-to-site mutual information function except 
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that P~ are the probabilities for L-blocks and P~(d) are the joint 
probabilities for two L-blocks: 

K L K L 

lo-  P~( d) (1.3) 

If not specified, I will consider only the site-to-site mutual  information 
functions (and the superscript ell is dropped). 

As an illustration for a comparison between correlation functions and 
mutual information functions, as well as the effects of block length L, Fig. 1 
shows the M(d) EL1 ( L =  1, 2, 3,4) and F(d) for the binary sequences 
generated by nearest-neighbor cellular automaton rule 110. (7) Notice that 
F(d) can either be positive or negative, whereas M(d) is always non- 
negative. The peak at d = 14 is an indication of the underlining periodicity 
of 14 in the sequences. 

Mutual information has been applied to sequences in various fashions. 
Chaitin (8) proposes to split a system and calculate the mutual information 
among the components;  then the maximum value of the mutual informa- 
tion in all conceivable partitions is used to mathematically define "life" or 
"organization." Shaw (9) and Grassberger, (1~ among others, use the mutual 
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Fig. 1. F(d) and M(d) EL1 (L=1,2,3,4) for spatial sequences generated by cellular 
automaton rule 110 (or the following rule: 000~0, 001 ~ 1, 0t0~1, 011--*1, 100~0, 
101--+ 1, 110--* 1, and 11I ~0). The sequence lengths are N=400, 1600, 6400, and 25,600, 
respectively, for increasing L 



826 ki 

information between two semi-infinite blocks in a sequence to define the 
"complexity." These applications of mutual information lead to a single 
value which characterizes the sequence. Our mutual information function 
gives a whole function. 

In the definition of the correlation function, the probabilities are 
weighted by the variable values. As a result, correlation functions generally 
are not directly related to mutual information functions. For  example, we 
can have zero value of correlation function at some distance d, while the 
mutual information function at that distance can be any value. In a special 
case that the joint probability distribution is Gaussian, it has been proved 
that the correlation function and mutual information are directly related to 
each other. (3) In this paper, the connection between the two functions in 
another special case (i.e., for binary sequences) will be given. 

The paper is organized as the follows: Section 2 is about the relation 
between F(d) and M(d) E1J for binary sequences; this relation is then 
illustrated by examples of regular languages in Section 3; Section 4 shows 
that for ternary sequences, the connection between the two functions fails 
to be true, and we discuss the case of "weak correlation"; Section 4 changes 
to a different topic of how to estimate the finite-size effect in a calculation 
of mutual information; and Section 5 discusses the concept of "symbolic 
noise." 

2. RELATION B E T W E E N  M(d) A N D  r(d) 
FOR B I N A R Y  S E Q U E N C E S  

In this section, I will show that if the sequence is binary (i.e., there are 
only two symbols), the number of the independent joint probabilities for 
two sites is reduced from four to one. As a consequence, the correlation 
function can be directly related to the mutual information function. 

Notice that only the nonzero variable values can contribute to the 
correlation function; we have the correlation function for binary sequences: 

r ( d )  = P , l ( d )  - P~I (2.1) 

where P11(d) is the joint probability for having two symbol l's separated 
by distance d, and P1 is the probability for having symbol 1. 

At the first glance, one would be tempted to conclude that since the 
mutual information function needs all four jo in t  probabilities to specify its 
value, whereas the correlation function needs only one, there should be no 
direct relation between the two functions. Nevertheless, because the two 
variables whose joint probabilities are to be calculated are extracted from 
the same stationary sequence, we have the following constraints. 
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First of all, suppose the sequence has no particular direction, i.e., the 
sequence is the same whether being looked at from left to right or from 
right to left. If this is true, we have the symmetry constraint on the joint 
probabilities: 

P~e( d) = P ~( d) (2.2) 

for e, f ie(0,  1). 
Second, by the very definition of the joint probability, we have 

1 

P~= ~ P~a(d) (2.3) 
/ ~ - 0  

There is otherwise nothing particularly interesting about this formula 
except that the right-hand side of the equation is a function of distance d, 
whereas the left-hand side is not! The implication is that the functional 
form of the two expressions P~(d) should be such that they cancel each 
others d-dependent term. 

We also have the normalization condition 

2 P~a(d) -- 1 (2.4) 

but it turns out that it is equivalent to the condition Y~, P~ = 1 and will not 
provide more reductions to the number of independent P~,(d). 

For binary sequences, the first constraint provides one reduction, and 
the second provides two reductions. The number of independent joint 
probabilities is actually one! 

Carrying out the details, we get 

Pol(d) = Plo(d) = PI - Pll(d) 
(2.5) 

Poo(d) = (1 - 2P1) + Pll(d) 

In term of correlation function, these become 

P11(d) ~--/~(d) -~- p2 

Poo(d) = F(d) + p2 (2.6) 

Pol(d) = Plo(d) = -V(d) + PoP1 

The relation between mutual information function and the correlation 
function for binary sequences is 

M(d) = r(d) log [1 + r(d)/P~][1 + r(d)/P~] ( . r(d)~ 
[ 1 - F ( d ) / P o P 1 ]  2 + e~ log _ 1 + - - P T )  

+ P~log( i  ' r(d)'~ l og (1  F(d)'~ +--~o2 ) + 2P~ -- P--~I.] (2.7) 

822/60/5-6-20 
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One approximation to the above equation is when the correlation 
function decays to zero at longer distances and both F(d)/(P~P~) are small. 
In this limit, we found that all the first-order terms of F(d) are canceled, 
and only the second-order terms remain: 

M ( d ) m - - ~  ~ ~ 2 \PoP,/  (2.8) 

An interesting observation from this equation is that mutual informa- 
tion functions decay to zero at a faster rate than the corresponding correla- 
tion functions. For example, if F(d)~ lid ~, then M(d)~ 1/d 2B. This result 
is important in the study of symbolic noise to be discussed in the last 
section. For example, if we want to identify the symbolic sequences which 
are analogous to the numerical sequences with 1/ff (e ~ 1) power spectra 
(called 1/ff noise), because we know that the correlation function for 1If 
noise behaves like F(d)~ lid 1 =, we would expect that M(d) for the 
symbolic sequence also behaves like a power law function with a different 
exponent M(d) ~ 1/d 2(~ - ~) if the sequence is binary. 

For sequences with more than two symbols, both the correlation func- 
tion and the mutual information function receive contributions from more 
than one independent joint probability. One has to assume all the func- 
tional forms for these joint probabilities before making a connection 
between the two. Any relation between the exponents of the two power taw 
functions for F(d) and M(d) will depend on a particular assumption made 
about the joint probabilities. 

3. E X A M P L E S  OF M A R K O V  C H A I N  
A N D  R E G U L A R  L A N G U A G E  

To illustrate the dependence among the joint probability P~(d)'s for 
binary sequences, we include examples of a Markov chain and a regular 
language in  this section. For Markov chains, the one-step transition 
probabilities T~ ~ ~ are given, and all the d-step transition probabilities can 
be derived from the one-step transition probabilities. It is well known that 
the joint probabilities P~B(d) decay exponentially with distance d, and so 
do the correlation functions (see, e.g., ref. 11). 

Figure2a shows a Markov chain with the one-step transition 
probabilities T o ~ o = p ,  T o o l = l - p ,  T l ~ o = l ,  and T a ~ I = 0 .  These 
transition probabilities can be grouped into one matrix: 

0 1 

T = I  0 
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Fig. 2. (a) The graph which represents a simple Markov chain with transition probabilities 
To~0=p, To~l=l-  p, Tl~o=l, and T1~1=0. (b)A regular language similar to the 
Markov chain in (a). 

where T,a -= T, ~ a. The dth power of this matrix gives the d-step transition 
probabilities and the joint probabilities P~,a(d)= P~,(Ta)~,p. The left eigen- 
vector of the matrix for eigenvalue 1 gives the invariant probabilities (i.e., 
densities) of the symbols. They are 

1 l -p (3.2) Po - Pt = 
2 - p '  2 - p  

The dth power of the one-step transition matrix is 

1 - (  
T a - 1  (11 "1 2-----p k - 1  (3.3) 

2 - -p  ~_p) 4(__ i + p ) a ( l _ p  l ? p ) )  

Multiplying the first row by Po and the second row by P1, we have the 
joint probabilities [all P~a(d) are in one matrix P(d)]: 

1 1 --p 1 - p  1 - p  \ 
- -  (2--p)2 (2-p)2 (2-~-)2 P(d)= ( 2 - p ) 2  + -  ( - l + P ) a  - ( - l + p ) a  

1 - p  1--p  ( _ l + p )  a ( l - p )  z . 1 - p  ( _ l + p ) a /  
(2--p)2 (2--p)2 (2 ~ + ( 2 - p ) 2  

(3.4) 

As expected, the formula P~,tj(d)=(-1)l-'~F(d)+P:,Ptj in Eq.(2.6) 
indeed holds (5=a = 1 if cr =/~, and = 0 if ~ # fl). 
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Figure 2b shows an example of a regular language (12) which is not 
exactly a Markov chain by the original definition, because the transition 
probability from symbol 0 to 1 can either be zero (if it is the symbol 0 on 
the left branch, or 0~), or one (if it is the symbol 0 on the right branch, or 
0b). Nevertheless, it becomes a Markov chain if we consider it as a 
sequence with three symbols: 0~, 0b, and 1. Similar procedures can be 
carried out, but instead of dealing with a 2-by-2 matrix, we calculate the 
dth power of a 3-by-3 transition matrix. Notice that the joint probability, 
for example, Poo(d) is determined by all four Polos(d) (0~, 0 B are either 0~ 
or 0b). A detailed calculation showed that the joint probabilities for 
sequences generated by Fig. 2b are exactly the same as those generated by 
Fig. 2a, and I will not include the details here. For more examples of 
calculating the joint probabilities for regular languages, see ref. 13. 

4. W E A K  C O R R E L A T I O N  IN T E R N A R Y  S E Q U E N C E S  

Call two variables { as } and { b~ } linearly independent if Y ~  a~ b ~ P ~  = 
(Z~ a~P~)(Z~ b~P~) for all c~,/3, and generally independent if P ~  = P~P~ for 
all c~,/3. (3) The linear independence is equivalent to the zero correlation 
(function), and the general independence is equivalent to the zero mutual 
information. For binary sequences, because F(d) is related to M(d) by 
Eq, (2.7), linear independence leads to general independence. Nevertheless, 
for sequences with more than two symbols, linear independence may or 
may not result in general independence. In this section, I will examine ter- 
nary sequences, i.e., sequences with three symbols, to see what constraints 
apply to M(d) when F ( d ) =  0. I will call the two sites having zero correla- 
tion but nonzero mutual information weakly correlated, instead of using 
the long phrase "linearly independent but generally dependent." 

Following a similar argument to Section 2, the nine joint probabilities 
for two-site ternary sequences are reduced to three independent functions 
by three symmetry conditions P~(d)~-P~(d) and three definitions of 
densities P~=Z~P~(d). Choose Poo(d), P11(d), and Pz2(d) as the three 
independent functions. 

It is easy to show that other joint probabilities become (for ~ ~/3; 7 is 
the third index, which is not equal to ~ or/3): 

= - P  (di- P  (d)3 + l ( _ p ,  + + (4.1) 

Set the correlation F(d) equal to zero: 

0 = F(d) = P11(d) + 2P12(d) + 2P21(d) + 4P22(d) - (Px + 2P2) 2 

= 2[Poo(d) - P~] - [Pz~(d) - p2] + 2[P22(d) _ p~] (4.2) 
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Then P~l(d) is no longer an independent function, and it is related to 
Poo(d) and P~(d) by 

PH(d) = 2 [Poo(d) - P~] + 2[P2~(d) - P~] + p2 (4.3) 

Other joint probabilities in terms of the two independent functions Poo(d) 
and Pil(d) are 

Po~(<r = ~ r -  S'oo(d) + S'o ~7 + �89  ~ ( a )  + e~] + eoP,  

Po=(d) = �89 - Po ~] + �89 - P~] + PoPz (4.4) 

e~(a )  = �89  S'oo(a) + S'o ~1 + 3 r -  s,~(a) + s,~] + s>~ s,= 

In order to see what possible mutual information values one can have 
when F(d)= 0, I did the following experiment: first randomly choose Po 
and 0 < Pz < 1 - Po, then randomly choose 0 < Poo < Po and 0 < P22 < P2, 
and calculate all the remaining joint probabilities by Eqs. (4.3) and (4.4). 
If all of them are nonnegative, calculate the mutual information. The M(d) 
versus Poo + P22 is plotted in Fig. 3. 
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2.00 

I .  50 

1.00 

0.50 

O. O0 

.. ~.. r..- %q;~.~-i~, ~ + $  : . . .  : ". 

,....+:~ .. ~ ; ~ ; j ~ - ~ : . ~ . .  : . . . = .  
~ , E . ~ g t r , . ~  :..,.-.:.]. �9 . . . .  

. ~  ,i~.'., ~ . . . . . .  "2' "~.. 
""" ~,~i<":~::.: ,?...: . . . .  

�9 O0 O. 2 5  0 . 5 0  O. 7 5  1 . 0 0  
p_O 0 +p_22 

Fig. 3. Mutual information versus Poo + P22 in ternary sequences when F(d)= O. 
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5. F IN ITE-S IZE  EFFECT: O V E R E S T I M A T I O N  OF M(d) 

In order to calculate mutual information, one has to accumulate the 
joint probabilities {P~}, which are the numbers of occurrence for the joint 
configuration {c~} divided by the total number of the counting N. In the 
case of the mutual information function, N is simply the length of the 
sequence. If we consider the joint probabilities calculated from an infinite 
number of countings as "true" values, those with finite statistics should 
deviate from the true value, or "a finite-size effect." In this section, I will 
show that the mutual information with a finite number of countings is 
almost always larger than the true value, and this overestimation is 
approximately K ( K - 2 ) / 2 5 ,  where K is the number of states for each 
variable. 

I use overbars to indicate the true values, and P ~  = c~yN, P~ = c~/N. 
The fluctuation of the countings are 

6ca~ = c ~ - - d ~ ,  ~c~ = c~ - ~ (5.1) 

M(d) can be written in a form which takes contributions from both the 
true values and the fluctuations: 

M(d) = ~, P~(d)  log Pap(d) _ 1 ( ~  c~  \ - c~t~ log c---~) + log(N) 

=/V ~ (~-~ + 6c~) log +log(N) (5.2) 

Using short-hand notations for relative fluctuations 

~1 ~ 6c~/-C~,  

we find that Eq. (5.2) becomes 

1 
M(d) = V ~ ~-~(1 + a l ) l o g _  

2'/ 

~-~(1 + ~1) 

c~. c~(1 +/~ +/~) 
t- log(N) (5.4) 

The relative fluctuation terms can be approximated by (up to the second 
order of the relative fluctuations) 

l + c q  
(1 + cq) log 

1+~,+~:  

(1 + ~1) log(1 + Cq -- fll -- f12 + fll 2 -- ~lfll) 

(1 + NI)(O~ I -- fiX + �89 __ I~2 __ ~2) 

~I -- ~I 1 2 1 2 + 2~1 + 2~1 - - ~ 2 -  0~lfll (5.5) 
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then the true mutual information M(d) can be separated from the M(d): 

1 ~ - -  1 _ 2 - -  l o 2  o 
M(d) = M(d) + cufl(~ 1 - / ~  1 -~- ~0~ 1 "~ 2 p  i - p2  - ~ 1/~1 ) 

1 c~  
+ N ~  V oq b~ log (5.6) 

Cc~ �9 C/3 

Because more counting for one configuration means less counting for other 
configurations (the total number of the counting N is fixed), there is a con- 
servation of fluctuations: 

,%~ = 0, ~ ~c~ = 0 (5.7) 

This conservation simplifies the formula to 

1 c~ 
M(d) = M(d) + _~ ~ c3c~,~ log 

C ce " C a 
i 

1 - -  1 2 1 2 

So far, we have not made any assumption on the joint probability 
distribution. If ? -~/ (~ .  ?-~) does not change with a and fl very much, the 
second term on the right-hand side of the above equation is approximately 
zero. After making this approximation, and noting that Eac:~=c:,  
Yr 6c~ = 6c~, we have 

1 ~ ( 6 c ~ )  2 1 ~(5c~):  (5.9) 
M(d) - M(d) ,,~ ~ c~ N ca 

The typical fluctuation of a variable is of the magnitude of the square 
root of the variable value, or fic~ ~ ~ and 3c~ ~ , ~ .  Then 

K ( K -  2) 
M(d) - M(d) ~ 2 ~  (5.10) 

where K =  ~ 1 is the total number of states for the variable. For example, 
if we want to calculate the M(d) between two 3-blocks for binary sequences 
with length N = 2400, K = 8 and M(d) - M(d) ~ 24/2400 = 0.01. Since K is 
always more than 2, the finite-size effect is always an overestimation of the 
mutual information. This is in contrast with the finite-size effect on the 
calculation of entropy H, which is always underestimated: 

1 E (6c~)2 K (5.11) 
H - - / q ~  - ~  ~ ~ N 
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Again, first-order terms are discarded, assuming log(ca) does not change 
with e very much. (A similar discussion on the finite-size effect on the 
entropy calculation is given in ref. 14.) 

6. S Y M B O L I C  N O I S E  

As emphasized in the introduction, the correlation function as defined 
by (1.1) does not apply to symbolic sequences. In practice, people some- 
times calculate the correlation function for a particular symbol: the numeri- 
cal value is one if that symbol is present and zero if not. For  sequences with 
K symbols, there are K such correlation functions. This application of 
correlation to symbolic sequences is equivalent to F~ ( d ) -  P ~  ( d ) -  P]  for 
c~ = 1, 2 ..... K. These functions will not measure the correlation between 
different symbols, since P~(d) are not used. 

The mutual information function is a better quantity for measuring 
correlations in symbolic sequences, because mutual information is zero if 
and only if the two sites are generally independent, or P ~  = P~PB for all 
e, ft. It is conceivable that some other measure of correlation, such as 
F~ (d), will be zero if the two variables are generally independent, but the 
reverse may not be true. 

Correlation functions as well as their Fourier transform, power spec- 
tra, play an important role in characterizing and classifying numerical ran- 
dom sequences, or noise. There are different types of noise, such as white 
noise, Brownian noise, and 1If noise, based on the form of their correlation 
functions and power spectra (see, e.g., ref. 15). Few similar discussions exist 
in the literature for symbolic sequences, partly because there is no standard 
way to measure correlations in symbolic sequences. Such discussion is far 
from being useless, noting, for example, the important application to DNA 
molecules and other biopolymers. 

Here I propose the name symbolic noise for those symbolic sequences 
with a large value of single-site entropy but many possible forms of mutual 
information functions. If the mutual information function for a symbolic 
sequence decays to zero even at the nearest neighbor, that sequence can be 
considered as the symbolic counterpart for white noise. On the other hand, 
if the mutual information function decays very slowly (power law function 
with very small exponent), the sequence might be something similar to the 
l i f t  noise, or can be called symbolic 1If noise. 

Of course, the classification of symbolic noise is more useful when we 
find some examples in the real world. The first things that come to mind 
are the letter sequences of natural language texts and the nucleotide 
sequences of DNA or RNA molecules. If the units of symbols are chosen 
differently, we can have, for example, word sequences in language and 
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codon sequences in DNA molecules. Suppose we consider only the smallest 
units; what types of symbolic noise are the natural language texts and the 
DNA sequences? 

The mutual information functions for letter sequences in several 
English and German texts have been calculated. (16) One of the plots is 
reproduced in Fig. 4: the mutual information function for 28-symbol letter 
sequences (26 letters, one blank space, and one symbol incorporating all 
punctuations). Other ways of choosing symbols are also discussed in 
ref. 16, for example, using one symbol to represent all vowels, one symbol 
for all consonants, one for punctuations, and one for blank space. The 
mutual information function does not seem to be sensitive to the choice of 
symbol unit. 

From Fig. 4, the mutual information functions decay somewhat 
between a power law function and an exponential function (for shorter dis- 
tances). If we insist on using power law functions, the functional form can 
be approximated by 

M ( d )  ~ 1 /d  3 (6.1) 

l e t t e r  s e q u e n c e  

\ \ \  

p ~ 

_ \ \  \ 

shake  \ ~ ' ~ "  v ~ 0 .01  -- ~ " - 

o . 

_ o hamle t  i i 

0 . 0 0 1  [] bible 

x ap . . . . . . . . . . . . . .  

0.0001 , r ~ , , , i rl ~ f , 

1 2 5 10 20 50 
log(d) 

Fig. 4. Site-to-site M(d) for letter sequences (28 symbols) from (1)Shakespeare's play 
Hamlet; (2)Associated Press news articles; (3)the five books of Moses from the Bible in 
German; (4) 11 plays by Shakespeare. The dashed line is an inverse power law function lid 3. 
The dotted lines are the estimated residue values of M(d) according to K(K-  2)/2N. 
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For  now, we do not know what a good name would be for this type of 
symbolic noise, but it is not symbolic 1If  noise, because the correlation 
measure decays too fast. 

Another application of the classification of the symbolic noise is for 
sequences generated by formal languages, (12) discrete dynamical systems 
such as cellular automata,  Iv) and symbolic approximation of continuous 
dynamical systems (symbolic dynamics)J  ~v) One topic being studied con- 
cerns the spatial correlations generated by cellular automata.  (~3) In ref. 13, 
only the two-state cellular automata  are studied, and the correlation func- 
tion should be as good as the mutual information function according to the 
discussion in Section 2. Nevertheless, if there are more symbols and if the 
numerical values for the symbols are not of substantial importance for the 
system, the mutual information function is preferred over the correlation 
function. 

One way to generate 1I f  ~ noise is to use a context-free L-system (18) 
called the expansion-modification system. (x9'2~ In this model, it is the sym- 
bolic operation that is responsible for the generation of the long-range 
correlation. Again, since only two symbols are used in refs. 19 and 20, it is 
possible to calculate the correlation function and the power spectrum. On 
the other hand, if L-systems are applied to more than two symbols and if 
the symbols do not have numerical values, we should use the mutual  infor- 
mation function to characterize the correlation. 
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